If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+13x=84
We move all terms to the left:
2x^2+13x-(84)=0
a = 2; b = 13; c = -84;
Δ = b2-4ac
Δ = 132-4·2·(-84)
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-29}{2*2}=\frac{-42}{4} =-10+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+29}{2*2}=\frac{16}{4} =4 $
| 4+3(3x-5)=97 | | 16+7x=2+5x | | x+13=-x+31 | | 2x+14/3x+6=4/1 | | -5v-8=2 | | -78=10b-3 | | 63=m/8+58 | | 5x-13+x=9x-7 | | 30/5=x6 | | 1/3(w+2)=-10 | | 4(t-1)2=7 | | 3x+3=-55 | | 68=4(1-4p) | | 7(7x+4)-(1+4x)=-63 | | 2x+20+2x+20=6-6 | | X-19=1/2x+6 | | 4(x+9)=7x+5 | | 12.25+5.25x=15+0.50x | | 17+3n=98 | | 8x+4x+11=24 | | 27y-9=3(9y-3) | | m−2=12 | | 5/8=-3/4+r | | x+39+3x-12=119 | | p3− 1=1 | | 2x+1=-x+28 | | 305=x6 | | 6+3x-2=2x+8 | | (n/4)-2=25 | | -x+29=7(7x-3) | | 56+9w=353 | | -v+8(7+5v)=8v-37 |